
PSActionPallete implements an object class and InterfaceBuilder palette that can be
viewed as a way to add simple scripting to InterfaceBuilder (using PostScript as the
scripting language) or as a simple PostScript previewer object class.

The PSAction object responds to the standard take*ValueFrom: messages (e.g.
takeIntValueFrom:) and puts the value received on top of PostScript's stack along with the
PostScript code associated with the PSAction object (usually scripted from within
InterfaceBuilder). This is executed and the PSAction object checks the datatype of the
result left on PostScript's stack, pops it and sends the appropriate take*ValueFrom:
message onto the PSAction object's own target. (Error messages generated in the
PostScript execution can optionally be directed to a Text object.)

This gives you the ability to add PostScript code between a Control object and it's target,
in InterfaceBuilder, to adjust the result to something more appropriate for your program to
take as input. (You can adjust the output of a slider to be non-linear, round results to
increments of 0.5, substitute strings like high, medium & low for numeric values, etc.)

Additionally, you can optionally associate a view with the PSAction object where
PostScript graphics generated by the script will be rendered. This, for example, gives
you a way to implement visual feedback to the user directly in InterfaceBuilder. (The
PSActionExamples *.nib file mentioned below has simple examples of giving feedback
about the radius of a circle and gray shade as determined by a slider.)

To use the PSAction object in your application, along with dragging the palette into
InterfaceBuilder, you need to either include the sources for PSAction.{h,m} as well as
PSActionWrap.psw in ProjectBuilder or include the PSAction.o and PSActionWrap.o
object files. In general, since everything that the PSAction object needs can be set from

InterfaceBuilder, you don't need to reference the PSAction* header files from your own
code unless you manipulate PSAction objects programmatically. You'll also need to
include dpsops (libdpsopts.a) in your application's list of libraries.

A quick example in 10 easy steps:

1) Start up InterfaceBuilder and select the 'Document>New Application' menu item.
2) Drag the PSActionPalette into InterfaceBuilder's Palettes window.
3) Select the PSAction palette item and drag an instance into the Objects suitcase.
4) To 'My Window' add a Slider and two TextFields.
5) Connect the Slider to the PSAction instance, use the takeFloatValueFrom: method.
6) Connect the PSAction instance to one of the two TextFields (we'll call it A), use the
PSAction object's target outlet.
7) Connect the PSAction to the other TextField (let's call it B), use the script outlet. Be
sure to empty out the contents of this TextField!
8) Make sure everything works correctly by running 'Document>Test Interface'. You
should be able to move the slider and see TextField A's value change between 0 & 1.
9) Set the content of the script, TextField B, to be '4 mul cvi 4 div'. You can even do this
in test mode if you want.
10) Moving the slider in test mode should now produce values between 0 & 1 but in
increments of 0.25.

Add another TextField connected to the PSAction errors outlet and experiment!

The PSAction class is a subclass of Object and has four outlets that can be set from
InterfaceBuilder or via the following methods:

- script;
- setScript:anObject;

A Control or Text object or subclass. This object contains the PostScript code that
the PSAction object will execute. If this outlet isn't set or the object is devoid of text, then
the target/action message sent to the PSAction object will simply be relayed to the
PSAction object's own target. In normal usage, once the PSAction script is debugged,
the text is set invisible and not selectable or keep visible in a window not accessible to the
user of the program. (You can of course leave the script editable if you're implementing
an embedded PostScript previewer in your application.) Though generally set from within
InterfaceBuilder, the PostScript code contained in the object pointed to by this outlet can
be changed by your program at runtime as well.

- target;
- setTarget:anObject;

A Control object or subclass (e.g. Slider, TextField). This object receives a
takeStringValueFrom:, takeIntValueFrom: or takeFloatValueFrom: message from the
PSAction object depending on what it finds on top of the PostScript stack after the script
executes. (PostScript names are converted to strings and boolean types are converted
to integers.) The message sent to the target will not necessarily correspond in type to the
message sent to the PSAction object itself. (E.g. a slider can send the PSAction object a
float but the PSAction object might pass an integer or a string to its own target based on
what is found on the top of the PostScript stack.) If this outlet is nil or doesn't respond to
the standard take*ValueFrom: messages, no message is sent.

(Although there are target access methods, here are no action & setAction: access

methods in the PSAction class as the action performed depends on what is left on
PostScript's stack after script execution.)

- errors;
- setErrors:anObject;

A Text object or subclass. This optional outlet is where PostScript messages are
sent if there errors executing the script. (PSAction object internal error messages are
sent here as well.) This is primarily intended for debugging.

- view;
- setView:anObject;

A View object or subclass. This optional outlet should be set to a custom view object
in InterfaceBuilder if you want to see the graphics generated by the script, if any. If not
set, an invisible scratch view is used instead.

There are several flags that can be set from the InterfaceBuilder inspector for the
PSAction object or via the following methods:

- (BOOL) isEnabled;
- setEnabled:(BOOL) flag;

Disables the PSAction object such that it won't execute the PostScript code nor pass
a value onto its target. You can make the PSAction object just pass on values handed to
it by setting the script outlet to nil. The object is enabled by default.

- (BOOL) isErrorReported;
- setErrorReported:(BOOL) flag;

Turns on and off error reporting in the PSAction object. Turned on by default. If
there is no errors outlet set, error messages go to stderr.

- (BOOL) isCacheCleared;
- setCacheCleared:(BOOL) flag;

Determines if the view object pointed to by the view outlet is cleared before the script
is executed. The cache is cleared by default. You probably don't need to worry about
this unless you've set the optional view outlet in InterfaceBuilder.

The input to the PSAction object (the value that gets put on top of PostScript's stack and
causes the script to execute) can be set from a target/action object within InterfaceBuilder
or one of the following methods:

- takeIntValueFrom:sender;
- setIntValue:(int) anInt;

- takeFloatValueFrom:sender;
- setFloatValue:(float) aFloat;

- takeDoubleValueFrom:sender;
- setDoubleValue:(double) aDouble;

(The *DoubleValue*: methods really only handle the float type PostScript doesn't

have both a float and double type.)

- takeStringValueFrom:sender;
- setStringValue:(const char *) aString;

The result of passing a value to the PSAction object and executing the script are queried
with the following standard methods (usually by the target object):

- (int) intValue;
- (float) floatValue;
- (double) doubleValue; (See the comment about double precision numbers above.)
- (const char *) stringValue;

The PSActionExample directory contains an example InterfaceBuilder *.nib file that
shows some potential uses of the PSAction object. These can be examined and
executed directly from InterfaceBuilder in 'Test Interface' mode or you can build the
application and run it.

Miscellaneous:

PSActionPalette includes a slightly modified version of the palette.make file so that it can
correctly pass OTHERLINKED which is defined in the standard palette.make but never
used. This allows linking with libdpsops.a which is required and not already linked into
InterfaceBuilder.

The current release of PSActionPalette was built and tested under the 3.2 release of
NeXTSTEP -- use under earlier (or later) versions may require modification.

